

ERF 2005 · October 16-21, 2005 · Norfolk, Virgina

estuarine interactions: biological-physical feedbacks and adaptations

Research and screening models for science and management - Integrated assessment of ecological balance and sustainability in coastal zones

ERF 2005, 18th Biennial Conference of the Estuarine Research Federation Norfolk, Virginia SYM-06 - Managing River Basins and Estuaries: an International Assessment of Approaches and Progress. October 18th 2005

J.G. Ferreira, S.B. Bricker, A.M. Nobre, J.P. Nunes, X. Yan, X.L. Zhang, M.Y. Zhu

http://www.eutro.org

Topics

Pressure-State-Response
Screening models for PSR
Scenario analysis
A framework for research models
Research and screening models

000 01 00

Slides Slides S

2

Huangdun Bay, China

Coastal eutrophication Pressure-State-Response

<u>Drivers</u>

- Agriculture loss of fertilizer, etc
- Urban discharges (sewage)
- Industrial discharges
- Atmospheric deposition
- Internal (secondary) sources (e.g. P from sediments)
- Advection from offshore (e.g. N and P, certain types of HAB)

Pressure
N and P loading to the coastal system
HAB phytoplankton
"loading" from offshore

<u>Response</u>

- Fertilizer reduction
- WWTP (sewage, industry)
- Emmission controls
- Sediment dredging etc
- Time...
- Interdiction (e.g. HAB events)

State

- Primary symptoms
 - Decreased light availability
 - Increased organic decomposition
 - Algal dominance changes
- Secondary symptoms
 - Loss of SAV
 - Low dissolved oxygen
 - Harmful algae

State as a function of pressure

Pressure-State relationships and typology

Degradation as a function of pressure

PSR - Evaluation of State

Northern Ireland Sea Loughs

Physico-Chemical

- Temperature
- <u>Salinity & conductivity</u>
- Lighrt extinction
- Dissolved oxygen
- Suspended matter
- POM, POC
- Nutrients (N, P, Si)

Biological

- <u>Chlorophyll a</u> & Phaeopigments
- <u>Phytoplankton species</u>
- Benthic invertebrate fauna
- <u>SAV</u>
- <u>Macroalgae</u>

Fire Edit View Add Search Tools Ontoos Help					
New B Open - Gr Close Exit ? About Properties & Security g Integrity	Lough	Stations	Samples	Parameters	Results
Database Belfast Lough	Foyle	42	3284	105	23673
Belfast Lough The Br Bedrat Tools Options Developmenters	Larne	7	84	13	814
Samples Win Could be Samples Win Could be Samples Win Could be Samples Win Could be Samples and the Sample	Belfast	63	7514	78	40565
Armonics	Strangford	22	3043	98	19992
#4 #5 #6	Carlingford	113	4912	273	34171
		×	~	140 000 r	esulte

Sanggou Bay – ASSETS Application

ASSETS: HIGH

Indices	Methods	Parameters	Rating	Level of expression	Index
Overall Human	Succeptibility	Dilution potential	High	Low	
	Susceptibility	Flushing potential	Moderate	susceptibility	LOw
A33E13. 3	Nutrient inputs		Moderate		
		Chlorophyll a	Low		
Overall Eutrophic	Primary	Macroalgae	No Problem	* Low	
Condition (OEC)		Dissolved Oxygen	No Problem		LOW
ASSETS: 5	Secondary	Submerged Aquatic Vegetation	No Problem	Low	
		Nuisance and Toxic Blooms	No Problem		
Determination of Future Outlook (DFO)	Future nutrient	Future nutrient pressures remain the same		emain the same	NO CHANGE
ASSETS: 3	pressures				
Estuary Characteri	stics: Popul	ation (X 10 ³)	200	Main issues and in	mpacts:
	Nutrie Mean Mean	ent loading (tN y ⁻¹) depth (m) tidal range (m) crosidonco timo (d)	400 7.5 1.5 20	Cultivation of oysters, kelp – h bivalve mortality	scallops, ligh summer from disease

Huangdun Bay – ASSETS Application

ASSETS: POOR

Indices	Methods	Parameters	Rating	Level of expression	Index
Overall Human Influence (OHI)	Susceptibility	Dilution potential	Moderate	Moderate susceptibility	
		Flushing potential	Moderate		nion
	Nutrient inputs		High		
Overall Eutrophic	Primary	Chlorophyll a	High		
		Macroalgae	No Problen	Moderate ^{1*}	
Condition (OEC)		Dissolved Oxygen	No Problem	n	MODERATE
ASSETS: 3	Secondary	Submerged Aquatic Vegetation	Unknonwr	Moderate	
		Nuisance and Toxic Blooms	Moderate		
Determination of Future Outlook (DFO)	Future nutrient pressures	Future nutrient pressures increase			WORSEN HIGH
ASSEIS: 1			500	Mein issues and i	
Estuary Character	Sucs: Populati Nutrient Mean de Mean tid	on (X 10°) loading (tN y ⁻¹) pth (m) lal range (m)	463 8 3.9	<u>Wain issues and in</u> Outer channel in the Changjian aquaculture of fin	fluenced by g plume, fish, oysters,

Human influence and uncertainty

Harmful Algal Bloom(?) Advection to the coast from offshore fronts

PML Remote Sensing Group

courtesy Plymouth Marine Laboratory, UK http://pml.ac.uk/

Multi-sensor discrimination of harmful algal blooms, P. I. Miller, J. D. Shutler, G. F. Moore and S. B. Groom, *Remote Sensing and Photogrammetry Society annual conference RSPSoc 2004*, 7-10 September 2004, Dundee U.K.

Ecosystem modelling Components and integration

Drivers and Pressure

State

Response

Remote sensing Land use, classification, but also water use (e.g. aquaculture structures)

Catchment models Based on topography, hydrography, land use, export coefficients etc. Provide "climatological-scale" data on e.g. nutrient pressures

Hydrodynamic modelling Few state variables, detailed circulation, fine grid, short time-step, runtime of weeks to months

Databases and GIS Spatial representation of water quality variables, box definition, assimilation and presentation of results

Ecosystem modelling Many state variables Larger boxes, longer timestep, multi-year runs, link to socio-economic models

Socio-economic valuation "Spreadsheet" models, based on public questionnaires, and classic equations. Limited feedback to the natural science components

======:

Socio-economic modelling Dynamic models, multi-year (5-25?) runs. Highly aggregated, feed back into both **Pressure** and **State**. Key issues are scaling and validation

Relationship between data, research models and screening models

Ria Formosa – ASSETS validation & model scenarios

Index	Methods	Parameters	Value	Level of expression	Index
Overall Eutrophic Condition (OEC)	PSM Field data	Chlorophyll <i>a</i> Epiphytes Macroalgae	0.25 0.50 0.96	0.57 Moderate	MODERATE
ASSETS OEC: 4	SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW
Overall Eutrophic Condition (OEC)	PSM Research	Chlorophyll <i>a</i> <i>Epiphyt</i> es Macroalgae	0.25 <i>0.50</i> 1.00	0.58 Moderate	
ASSETS OEC: 4	SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0 28	0.25 Low	LOW
Overall PSM Eutrophic Condition (OEC) ASSETS OEC: 4(5)	PSM Model green	Chlorophyll <i>a</i> <i>Epiphytes</i> Macroalgae	0.25 <i>0.50</i> 0.50	0.42 Moderate	MODERATE
	scenario SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW

- The application of the PSR framework for coastal eutrophication management was reviewed, highlighting the role of system typology;
- Examples of the results of highly aggregated eutrophication assessment models illustrate how this framework may be translated into meaningful indices such as ASSETS;
- Scenario analysis, focusing on management response, requires a combination of tools and must account for variable uncertainties related both human and natural factors;
- Research models provide a promising approach to the examination of scenarios and PSR dependencies – however the methodology is highly interdisciplinary;
- Field and experimental data, research models and screeening models should be used as complementary tool set, allowing complex science to be distilled into simpler assessment procedures which inform water management;
- Scientists often think everyone should understand what they do, although they frequently do little to simplify or explain.
 http://www.eutro.org

Remote sensing Huangdun Bay

****Google

Modelling of drivers and pressures Huangdun Bay

Human parameters: land use, agricultural and fertilization practices, effluent discharges, etc.

Physical parameters: altimetry, soil data, climate patterns, etc.

Model: routing of water and nutrients from source watersheds to aquatic system

Results: map of nutrient sources, nutrient loads in several points of the bay, etc.

Annual nitrogen loading

Model coupling: Spatial aggregation Strangford Lough

Delft3D Hydrodynamic model

EcoWin2000 ecological model

GIS I - Criteria for ecosystem division into EcoWin2000 model boxes

Physical data

Homogenous physical conditions for

- Morphology
- Currents
- Vertical stratification

Water bodies defined for Water Framework Directive (WFD) implementation

Due to management requirements for EQS, water body boundaries should fit model box limits

Aquaculture sites

When possible include aquaculture areas into boxes (rather than across boxes)

GIS II – Partitioning benthic food supply Carlingford Lough

Resource partitioning between cultivated and wild populations of filter-feeders

Analysis of the distribution of wild populations in Carlingford Lough

1) Use of historical data (abundance, expressed as number of animals per unit area at each station)

2) Interpolation of GIS surfaces and calculation of the number of organisms for the entire system

 Discrimination of individuals per species for each model box (only species which are well represented)

 Calculation of the theoretical consumption on the basis of filtration rates

 Aggregation across functional groups (e.g. suspension feeding species)

Estimation of the role of wild populations in partitioning the food resource

Ecosystem modelling

Spatial domain

Research model outputs

